Search for a keyword, phrase or title
Have climate policies accelerated energy transitions? Historical evolution of electricity mix in the G7 and the EU compared to net-zero targets
M. Suzuki, J. Jewell & A. Cherp. (2023). Have climate policies accelerated energy transitions? Historical evolution of electricity mix in the G7 and the EU compared to net-zero targets. Energy Research & Social Science. Open Access. DOI: https://doi.org/10.1016/j.erss.2023.103281
M. Suzuki, J. Jewell & A. Cherp. (2023). Have climate policies accelerated energy transitions? Historical evolution of electricity mix in the G7 and the EU compared to net-zero targets. Energy Research & Social Science 106, 103281. Open Access. DOI: https://doi.org/10.1016/j.erss.2023.103281
Climate policies are often assumed to have significant impacts on the nature and speed of energy transitions. To investigate this hypothesis, we develop an approach to categorise, trace, and compare energy transitions across countries and time periods. We apply this approach to analyse electricity transitions in the G7 and the EU between 1960 and 2022, specifically examining whether and how climate policies altered the transitions beyond historical trends. Additionally, we conduct a feasibility analysis of the required transition in these countries by 2035 to keep the global temperature increase below 1.5°C. We find that climate policies have so far had limited impacts: while they may have influenced the choice of deployed technologies and the type of transitions, they have not accelerated the growth of low-carbon technologies or hastened the decline of fossil fuels. Instead, electricity transitions in the G7 and the EU have strongly correlated with the changes in electricity demand throughout the last six decades. In contrast, meeting the 1.5°C target requires unprecedented supply-centred transitions by 2035 where all G7 countries and the EU must expand low-carbon electricity five times faster and reduce fossil fuels two times faster on average compared to the rates in 2015–2020. This highlights the insufficiency of incremental changes and the need for a radically stronger effort to meet the climate target.
Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways
V. Vinichenko, J. Jewell, J. Jacobsson, A. Cherp. (2023). Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways. Environmental Research Letters. Open Access. DOI: https://doi.org/10.1088/1748-9326/acf47a
V. Vinichenko, J. Jewell, J. Jacobsson, A. Cherp. (2023). Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways. Environmental Research Letters 18, 094066. Open Access. DOI: https://doi.org/10.1088/1748-9326/acf47a
Climate change mitigation requires rapid expansion of low-carbon electricity but there is a disagreement on whether available technologies such as renewables and nuclear power can be scaled up sufficiently fast. Here we analyze the diffusion of nuclear (from the 1960s), as well as wind and solar (from the 1980–90s) power. We show that all these technologies have been adopted in most large economies except major energy exporters, but solar and wind have diffused across countries faster and wider than nuclear. After the initial adoption, the maximum annual growth for nuclear power has been 2.6% of national electricity supply (IQR 1.3%–6%), for wind − 1.1% (0.6%–1.7%), and for solar − 0.8% (0.5%–1.3%). The fastest growth of nuclear power occurred in Western Europe in the 1980s, a response by industrialized democracies to the energy supply crises of the 1970s. The European Union (EU), currently experiencing a similar energy supply shock, is planning to expand wind and solar at similarly fast rates. This illustrates that national contexts can impact the speed of technology diffusion at least as much as technology characteristics like cost, granularity, and complexity. In the Intergovernmental Panel on Climate Change mitigation pathways, renewables grow much faster than nuclear due to their lower projected costs, though empirical evidence does not show that the cost is the sole factor determining the speed of diffusion. We demonstrate that expanding low-carbon electricity in Asia in line with the 1.5 °C target requires growth of nuclear power even if renewables increase as fast as in the most ambitious EU's plans. 2 °C-consistent pathways in Asia are compatible with replicating China's nuclear power plans in the whole region, while simultaneously expanding renewables as fast as in the near-term projections for the EU. Our analysis demonstrates the usefulness of empirically-benchmarked feasibility spaces for future technology projections.
The feasibility of climate action: Bridging the inside and the outside view through feasibility spaces
J. Jewell & A. Cherp. (2023). The feasibility of climate action: Bridging the inside and the outside view through feasibility spaces. WIREs Climate Change. DOI: https://doi.org/https://doi.org/10.1002/wcc.838
J. Jewell & A. Cherp. (2023). The feasibility of climate action: Bridging the inside and the outside view through feasibility spaces. WIREs Climate Change. DOI: https://doi.org/https://doi.org/10.1002/wcc.838
The feasibility of different options to reduce the risks of climate change has engaged scholars for decades. Yet there is no agreement on how to define and assess feasibility. We define feasible as “do-able under realistic assumptions.” A sound feasibility assessment is based on causal reasoning; enables comparison of feasibility across climate options, contexts, and implementation levels; and reflexively considers the agency of its audience. Global climate scenarios are a good starting point for assessing the feasibility of climate options since they represent causal pathways, quantify implementation levels, and consider policy choices. Yet, scenario developers face difficulties to represent all relevant causalities, assess the realism of assumptions, assign likelihood to potential outcomes, and evaluate the agency of their users, which calls for external feasibility assessments. Existing approaches to feasibility assessment mirror the “inside” and the “outside” view coined by Kahneman and co-authors. The inside view considers climate change as a unique challenge and seeks to identify barriers that should be overcome by political choice, commitment, and skill. The outside view assesses feasibility through examining historical analogies (reference cases) to the given climate option. Recent studies seek to bridge the inside and the outside views through “feasibility spaces,” by identifying reference cases for a climate option, measuring their outcomes and relevant characteristics, and mapping them together with the expected outcomes and characteristics of the climate option. Feasibility spaces are a promising method to prioritize climate options, realistically assess the achievability of climate goals, and construct scenarios with empirically-grounded assumptions.
Phasing out coal for 2 °C target requires worldwide replication of most ambitious national plans despite security and fairness concerns
V. Vinichenko, M. Vetier, J. Jewell, L. Nacke & A. Cherp. (2023). Phasing out coal for 2 °C target requires worldwide replication of most ambitious national plans despite security and fairness concerns. Environmental Research Letters. Open Access. DOI: https://doi.org/10.1088/1748-9326/acadf6
V. Vinichenko, M. Vetier, J. Jewell, L. Nacke & A. Cherp. (2023). Phasing out coal for 2 °C target requires worldwide replication of most ambitious national plans despite security and fairness concerns. Environmental Research Letters 18, 014031. Open Access. DOI: https://doi.org/10.1088/1748-9326/acadf6
Ending the use of unabated coal power is a key climate change mitigation measure. However, we do not know how fast it is feasible to phase-out coal on the global scale. Historical experience of individual countries indicates feasible coal phase-out rates, but can these be upscaled to the global level and accelerated by deliberate action? To answer this question, we analyse 72 national coal power phase-out pledges and show that these pledges have diffused to more challenging socio-economic contexts and now cover 17% of the global coal power fleet, but their impact on emissions (up to 4.8 Gt CO2 avoided by 2050) remains small compared to what is needed for achieving Paris climate targets. We also show that the ambition of pledges is similar across countries and broadly in line with historical precedents of coal power decline. While some pledges strengthen over time, up to 10% have been weakened by the energy crisis caused by the Russo-Ukrainian war. We construct scenarios of coal power decline based on empirically-grounded assumptions about future diffusion and ambition of coal phase-out policies. We show that under these assumptions unabated coal power generation in 2022–2050 would be between the median generation in 2 °C-consistent IPCC AR6 pathways and the third quartile in 2.5 °C-consistent pathways. More ambitious coal phase-out scenarios require much stronger effort in Asia than in OECD countries, which raises fairness and equity concerns. The majority of the 1.5 °C- and 2 °C-consistent IPCC pathways envision even more unequal distribution of effort and faster coal power decline in India and China than has ever been historically observed in individual countries or pledged by climate leaders.
Quitting fossil fuels: how fast can the world do it?
J. Jewell, M. Vetier, V. Vinichenko, O.M. Lægreid, S. Pai, A. Cherp, H. Brauers, I. Braunger, L. Nacke, H. Zerriffi. (2022). Quitting fossil fuels: how fast can the world do it? Policy brief.
J. Jewell, M. Vetier, V. Vinichenko, O.M. Lægreid, S. Pai, A. Cherp, H. Brauers, I. Braunger, L. Nacke, H. Zerriffi. (2022). Quitting fossil fuels: how fast can the world do it? Policy brief.
To meet climate targets, fossil fuel use needs to rapidly decline. Has anything similar happened in the past? Do current coal phase-out efforts put us on the path to save the climate? And how would such radical fossil fuel decline affect fossil fuel workers? To answer these questions, we analyzed historical precedents of fossil fuel decline, current efforts to phase-out coal and future pathways to reach climate targets.
We find surprising precedents of decline in the 1970s and 80s when industrialized wealthy economies responded to the oil crises. At the same time, the current pledges of coal phase-out are insufficient to deliver on the 1.5°C targets and are limited to countries with low costs and high enough capacity to overcome those costs. Nevertheless, in spite of the opposition from fossil fuel workers to transitions, we identify opportunities for low-carbon jobs to replace fossil fuel jobs.
Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions
L. Nacke, A. Cherp, J. Jewell. (2022). Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions. Oxford Open Energy. Open Access. DOI: https://doi.org/10.1093/ooenergy/oiac002
L. Nacke, A. Cherp, J. Jewell. (2022). Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions. Oxford Open Energy 1. Open Access. DOI: https://doi.org/10.1093/ooenergy/oiac002
Phasing out fossil fuels requires destabilizing incumbent regimes while protecting vulnerable groups negatively affected by fossil fuel decline. We argue that sequencing destabilization and just transition policies addresses three policy problems: phasing out fossil fuels, transforming affected industries, and ensuring socio-economic recovery in fossil resource-dependent regions. We identify the key mechanisms shaping the evolution of the three systems associated with these policy problems: (i) transformations of technological systems addressed by the socio-technical transitions literature, (ii) responses of firms and industries addressed by the management and business literature and (iii) regional strategies for socio-economic recovery addressed by the regional geography and economics literatures. We then draw on Elinor Ostrom’s approach to synthesize these different bodies of knowledge into a diagnostic tool that enables scholars to identify the phase of decline for each system, within which the nature and importance of different risks to sustained fossil fuel decline varies. The main risk in the first phase is lock-in or persistence of status quo. In the second phase, the main risk is backlash from affected companies and workers. In the third phase, the main risk is regional despondence. We illustrate our diagnostic tool with three empirical cases of phases of coal decline: South Africa (Phase 1), the USA (Phase 2) and the Netherlands (Phase 3). Our review contributes to developing effective policy sequencing for phasing out fossil fuels.
Historical precedents and feasibility of rapid coal and gas decline required for the 1.5°C target
V. Vinichenko, A. Cherp, J. Jewell. (2021). Historical precedents and feasibility of rapid coal and gas decline required for the 1.5°C target. One Earth. Open Access. DOI: https://doi.org/10.1016/j.oneear.2021.09.012
V. Vinichenko, A. Cherp, J. Jewell. (2021). Historical precedents and feasibility of rapid coal and gas decline required for the 1.5°C target. One Earth 4, 1477–1490. Open Access. DOI: https://doi.org/10.1016/j.oneear.2021.09.012
To limit global warming to 1.5C, fossil fuel use must rapidly decline, but historical precedents for such large-scale transitions are lacking. Here we identify 147 historical episodes and policy pledges of fossil fuel decline in 105 countries and global regions between 1960 and 2018. We analyze 43 cases in larger systems most relevant to climate scenarios. One-half of 1.5C-compatible scenarios envision coal decline in Asia faster than in any of these cases. The remaining scenarios as well as many scenarios for coal and gas decline in other regions have precedents only where oil was replaced by coal, gas, or nuclear power in response to energy security threats. Achieving the 1.5C target will be difficult in the absence of fossil fuel decline mechanisms that extend far beyond historical experience or current pledges.
Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs
S. Pai, H. Zerriffi, J. Jewell & J. Pathak. (2020). Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs. Environmental Research Letters. Open Access. DOI: https://doi.org/10.1088/1748-9326/ab6c6d.
S. Pai, H. Zerriffi, J. Jewell & J. Pathak. (2020). Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs. Environmental Research Letters. 15 (3), 034065. Open Access. DOI: https://doi.org/10.1088/1748-9326/ab6c6d.
Coal mining directly employs over 7 million workers and benefits millions more through indirect jobs. However, to meet the 1.5 °C global climate target, coal's share in global energy supply should decline between 73% and 97% by 2050. But what will happen to coal miners as coal jobs disappear ?Answering this question is necessary to ensure a just transition and to ensure that politically powerful coal mining interests do not impede energy transitions. Some suggest that coal miners can transition to renewable jobs. However, prior research has not investigated the potential for renewable jobs to replace 'local' coal mining jobs. Historic analyses of coal industry declines show that coal miners do not migrate when they lose their jobs. By focusing on China, India, the US, and Australia, which represent 70% of global coal production, we investigate: (1) the local solar and wind capacity required in each coal mining area to enable all coal miners to transition to solar/wind jobs; (2) whether there are suitable solar and wind power resources in coal mining areas in order to install solar/wind plants and create those jobs; and (3) the scale of renewables deployment required to transition coal miners in areas suitable for solar/wind power. We find that with the exception of the US, several GWs of solar or wind capacity would be required in each coal mining area to transition all coal miners to solar/wind jobs. Moreover, while solar has more resource suitability than wind in coal mining areas, these resources are not available everywhere. In China, the country with the largest coal mining workforce, only 29% of coal mining areas are suitable for solar power. In all four countries, less than 7% of coal mining areas have suitable wind resources. Further, countries would have to scale-up their current solar capacity significantly to transition coal miners who work in areas suitable for solar development.
Societal transformations in models for energy and climate policy: the ambitious next step
E. Trutnevyte, L.F. Hirt, N. Bauer, A. Cherp, A. Hawkes, O.Y. Edelenbosch, S. Pedde, & D.P. van Vuuren. (2020). Societal transformations in models for energy and climate policy: The Ambitious Next Step. One Earth. Open Access. DOI: https://doi.org/10.1016/j.oneear.2019.12.002.
E. Trutnevyte, L.F. Hirt, N. Bauer, A. Cherp, A. Hawkes, O.Y. Edelenbosch, S. Pedde, & D.P. van Vuuren. (2020). Societal transformations in models for energy and climate policy: The Ambitious Next Step. One Earth, 1 (4), 423-433. Open Access. DOI: https://doi.org/10.1016/j.oneear.2019.12.002.
Whether and how long-term energy and climate targets can be reached depend on a range of interlinked factors: technology, economy, environment, policy, and society at large. Integrated assessment models of climate change or energy-system models have limited representations of societal transformations, such as behavior of various actors, transformation dynamics in time, and heterogeneity across and within societies. After reviewing the state of the art, we propose a research agenda to guide experiments to integrate more insights from social sciences into models: (1) map and assess societal assumptions in existing models, (2) conduct empirical research on generalizable and quantifiable patterns to be integrated into models, and (3) build and extensively validate modified or new models. Our proposed agenda offers three benefits: interdisciplinary learning between modelers and social scientists, improved models with a more complete representation of multifaceted reality, and identification of new and more effective solutions to energy and climate challenges.
On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5°C?
J. Jewell & A. Cherp. (2020). On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5°C? Wiley Interdisciplinary Rev (WIRE) Climate Change. Open Access. DOI: 10.1002/wcc.621.
J. Jewell. & A. Cherp. (2020). On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5°C? Wiley Interdisciplinary Rev (WIRE) Climate Change, 11 (621). Open Access. DOI: 10.1002/wcc.621.
Keeping global warming below 1.5°C is technically possible but is it politically feasible? Understanding political feasibility requires answering three questions: (a) “Feasibility of what?,” (b) “Feasibility when and where?,” and (c) “Feasibility for whom?.” In relation to the 1.5°C target, these questions translate into (a) identifying specific actions comprising the 1.5°C pathways; (b) assessing the economic and political costs of these actions in different socioeconomic and political contexts; and (c) assessing the economic and institutional capacity of relevant social actors to bear these costs. This view of political feasibility stresses costs and capacities in contrast to the prevailing focus on benefits and motivations which mistakes desirability for feasibility. The evidence on the political feasibility of required climate actions is not systematic, but clearly indicates that the costs of required actions are too high in relation to capacities to bear these costs in relevant contexts. In the future, costs may decline and capacities may increase which would reduce political constraints for at least some solutions. However, this is unlikely to happen in time to avoid a temperature overshoot. Further research should focus on exploring the “dynamic political feasibility space” constrained by costs and capacities in order to find more feasible pathways to climate stabilization. This article is categorized under: The Carbon Economy and Climate Mitigation > Decarbonizing Energy and/or Reducing Demand
News and views climate-policy models debated: clarifying the role of IAMs
J. Jewell. (2019). News and Views Climate-policy models debated: Clarifying the role of IAMs. Nature, 573, 349–349. Open Access. URL: https://media.nature.com/original/magazine-assets/d41586-019-02744-9/d41586-019-02744-9.pdf.
J. Jewell. (2019). News and views climate-policy models debated: clarifying the role of IAMs. Nature, 573, 349–349. Open Access. URL: https://media.nature.com/original/magazine-assets/d41586-019-02744-9/d41586-019-02744-9.pdf.
Researchers and policymakers rely on computer simulations called integrated assessment models to determine the best strategies for tackling climate change. Here, scientists present opposing views on the suitability of these simulations.
Prospects for powering past coal
J. Jewell, V. Vinichenko, L. Nacke, & A. Cherp. (2019). Prospects for powering past coal. Nature Climate Change. Gated. DOI: https://doi.org/10.1038/s41558-019-0509-6. Preprint.
J. Jewell, V. Vinichenko, L. Nacke, & A. Cherp. (2019). Prospects for powering past coal. Nature Climate Change, 9(8), 592–597. Gated. DOI: https://doi.org/10.1038/s41558-019-0509-6. Preprint.
To keep global warming within 1.5 °C of pre-industrial levels, there needs to be a substantial decline in the use of coal power by 2030 and in most scenarios, complete cessation by 2050. The members of the Powering Past Coal Alliance (PPCA), launched in 2017 at the UNFCCC Conference of the Parties, are committed to “phasing out existing unabated coal power generation and a moratorium on new coal power generation without operational carbon capture and storage”. The alliance has been hailed as a ‘political watershed’ and a new ‘anti-fossil fuel norm’. Here we estimate that the premature retirement of power plants pledged by PPCA members would cut emissions by 1.6 GtCO2, which is 150 times less than globally committed emissions from existing coal power plants. We also investigated the prospect of major coal consumers joining the PPCA by systematically comparing members to non-members. PPCA members extract and use less coal and have older power plants, but this alone does not fully explain their pledges to phase out coal power. The members of the alliance are also wealthier and have more transparent and independent governments. Thus, what sets them aside from major coal consumers, such as China and India, are both lower costs of coal phase-out and a higher capacity to bear these costs. To limit warming, a rapid reduction in coal use is needed. Early retirement of coal power plants by members of the Powering Past Coal Alliance, which includes mainly wealthy countries that use little coal, would have a modest climate impact. Prospects for expanding the Alliance are examined.
Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs
J. Jewell. (2011). Ready for nuclear energy? An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy. Gated. DOI: https://dx.doi.org/10.1016/j.enpol.2010.10.041.
J. Jewell. (2011). Ready for nuclear energy? An assessment of capacities and motivations for launching new national nuclear power programs. Energy Policy, 39 (3), 1041–1055. Gated. DOI: https://dx.doi.org/10.1016/j.enpol.2010.10.041.
The International Atomic Energy Agency reports that as of July 2009 there were 52 countries interested in building their first nuclear power plant. This paper characterizes and evaluates these “Newcomer Countries” in terms of their capacity and motivations to develop nuclear power. It quantifies factors historically associated with the development of nuclear energy programs and then benchmarks the Newcomers against these data. Countries with established nuclear power programs, particularly where nuclear facilities are privately owned, are typically larger, wealthier and politically stable economies with high government effectiveness. Nuclear power was historically launched during periods of high electricity consumption growth. Other indicators for the potential of nuclear power include: the size of the national grid, the presence of international grid connections and security of fuel supply for electricity production. We identify 10 Newcomers which most closely resemble the Established Nuclear Power Countries and thus are most likely to deploy nuclear energy, 10 countries where the development of nuclear energy is uncertain due to high political instability, 14 countries with lower capacities where pursuing nuclear energy may require especially strong international cooperation and 18 countries where the development of nuclear power is less likely due to their significantly lower capacities and motivations.
Tags
- energy security 15
- feasibility 13
- futures 13
- fossil fuels 12
- coal 11
- Integrated Assessment Models 10
- renewables 10
- climate scenarios 9
- nuclear 8
- context 7
- energy subsidies 5
- theory of energy transitions 5
- China 4
- EU 4
- solar 4
- energy transitions 3
- wind 3
- CCS 2
- Germany 2
- India 2
- international relations 2
- Comparative analysis 1
- G7 1
- Japan 1
- Korea 1
- Middle East 1
- Turkey 1
- climate policy 1